
Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 1	

Department	of	Electrical	&	Electronic	Engineering	

Imperial	College	London	

2nd	Year	Laboratory	

Experiment	VERI:	FPGA	Design	with	Verilog	(Part	3)		

PART	3	–	Analogue	I/O	and	SPI	serial	Interface	

1.0	 The	Add-on	Card	

This	part	of	the	experiment	introduces	you	to	the	add-on	card	to	the	DE1	board.		The	add-on	
card	 consists	 of	 a	 10-bit	 ADC	 and	 a	 10-bit	 DAC,	 a	 quad	 op-amp,	 sockets	 for	 earphone	
(analogue	 output)	 and	 sound	 source	 (analogue	 input),	 and	 a	 potentiometer.	 The	 overall	
block	diagram	of	the	add-on	card	 is	shown	below.	 It	should	be	plugged	 into	the	expansion	
socket	 furthest	away	 from	the	edge	of	 the	DE1	board.	 	Beware	of	 the	alignment	between	
the	plug	and	the	socket.		If	the	add-on	board	is	inserted	correctly,	the	green	LED	will	light	up	
when	the	DE1	board	is	turned	ON.	

You	do	not	need	to	understand	all	 the	circuitry	on	this	board	 in	details.	 	Nevertheless,	 the	
schematic	diagram	and	a	detail	explanation	on	how	this	board	works,	together	with	all	the	
datasheets	of	the	components	used,	are	provided	on	the	Experiment	webpage.	

For	this	part	of	the	experiment,	you	would	need	to	bring	your	personal	earphone,	and	from	
the	Lab,	get	a	3.5mm	lead	and	a	digital	voltmeter.			

By	the	end	of	this	part	of	the	experiment,	you	will	have:	

• Understood	and	verified	the	operation	of	the	Serial-to-Parallel	Interface	(SPI)	of	the	
digital-to-analogue	converter	(DAC)	MCP4911	using	Modelsim;	

• Tested	the	DAC	and	measured	its	output	voltage	range;	
• Learned	 how	 to	 use	 a	 ROM	 (read-only	 memory)	 and	 a	 constant	 coefficient	

multiplier;		
• Use	the	analogue-to-digital	converter	(ADC)	MCP3002	to	convert	dc	voltages;	
• (Finally),	 designed	 a	 sinewave	 tone	 generator	 with	 variable	 frequency	 which	 is	

controlled	 with	 the	 slide	 switches,	 and	 the	 frequency	 value	 showed	 on	 the	
7-segment	displays	in	decimal	format.	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 2	

	2.0	 Experiment	10:	Interface	with	the	MCP4911	Digital-to-Analogue	Converter	

Step	 1:	 	 Understanding	 Datasheet	 -	 Go	 to	 the	 Experiment	 website	 and	 download	 the	
datasheet	 for	 the	 MCP4911	 DAC	 and	 the	 file	 spi2dac.v,	 which	 is	 a	 Verilog	 module	 that	
implements	 the	 SPI	 interface	 circuit	 to	 communicate	 with	 the	 DAC.	 	Make	 sure	 that	 you	
understand	from	reading	the	datasheet:	

• the	purpose	of	each	pin	on	the	DAC	(Section	3.0,	page	17	of	datasheet);	
• how	information	is	sent	to	the	DAC	through	the	serial	data	 input	(SDI)	pin	(Section	

5.0,	page	23-24);	
• how	to	configure	the	DAC’s	internal	function	(page	25);	
• DAC’s	timing	specifications	and	timing	diagram	(pages	4	and	7).	

There	is	no	need	for	you	to	know	how	exactly	the	DAC	works	internally.		However,	you	need	
to	 have	 sufficient	 appreciation	 of	 the	 serial	 interface	 in	 order	 to	 conduct	 this	 part	 of	 the	
experiment.	 	 Furthermore,	 don’t	 worry	 if	 you	 don’t	 fully	 understand	 the	 Verilog	 code	 in	
spi2dac.v.		This	will	be	explained	in	a	Lecture.		

Step	2:	 	Timing	diagram	–	The	spi2dac	module	takes	a	10-bit	
number	 in	 parallel	 (controlled	 through	 the	 load	 signal	which	
must	be	high	 for	 at	 least	 20ns)	 and	 generates	 the	necessary	
serial	 signals	 to	 drive	 the	 MCP4911	 DAC.	 	 Based	 on	 the	
information	 from	 the	 Datasheet,	 draw	 in	 your	 logbook	 the	
expected	 timing	 diagram	of	 the	 SPI	 interface	 signals	when	 a	
word	10’h23b	is	sent	to	the	DAC.	

Step	3:		Verify	timing	of	spi2dac.v	using	Modelsim	–	The	steps	are:	

1. Create	a	project	ex10	and	a	top-level	module	ex10_top.v	
2. Copy	to	the	directory	ex10	the	file	spi2dac.v	downloaded	from	the	webpage	
3. Make	this	file	top-level	module	(for	now)	
4. Click:	…		>	Process	>	Start	>	Analyze	and	Synthesise	
5. Start	Modelsim	(Tools	>	Run	Simulation	Tools	>	RTL	Simulation)	
6. Design	a	do-file	as	a	testbench	to	exercise	the	input	signals	correctly	
7. Run	the	do-file	and	match	the	waveform	generated	with	your	prediction	

	

Step	4:		Testing	the	DAC	on	DE1	

In	order	 to	 test	 the	spi2dac.v	module	and	verify	 that	DAC	works	properly,	 create	 the	 top-	
level	design	ex10_top.v	that	implements	the	circuit	shown	in	the	following	diagram.		

	

	The	data_in	value	determined	by	the	10	switches	(SW[9:0])	is	loaded	to	the	spi2dac	module	
at	a	rate	of	10k	samples	per	second	as	governed	by	the	load	signal.			The	steps	for	this	part	
are:	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 3	

1. Download	from	the	experiment	website	the	file	spi2dac.v.	
2. Check	that	the	clktick_16.v	module	that	you	used	last	week	is	in	the	“mylib”	folder.	
3. Create	a	top-level	module	ex10_top.v	to	connect	all	modules	together	as	shown	in	

the	diagram.	
4. Click:	Project	>	Add/Remove	Files	in	Project	…,	and	select	all	the	relevant	files	used	

here.	 	 This	 step	 is	 important	–	 it	 allows	you	 to	 select	which	modules	 to	 include	 in	
your	design.	

5. When	ex1__top.v	is	the	current	file,	click:	Project	>	Set	as	Top-Level	Entity.		This	is	
another	useful	step,	which	defines	the	top	module,	and	all	those	module	below	this	
one,	 for	 compilation.	 	With	 steps	 4	 and	 5,	 you	 can	move	 up	 or	 down	 the	 design	
hierarchy	in	a	project	for	compilation.	

6. Edit	the	ex10_top.qsf	file	to	include	pin_assignment.txt.	
7. 	Compile	and	correct	errors	as	necessary.	

Once	the	design	 is	compiled	without	error,	download	the	bit-stream	file	to	the	DE1	board.		
Using	the	DVM	feature	of	the	scope,	measure	the	DAC	output	voltage	at	TP8	for	SW[9:0]	=	0	
and	10’h3ff.	(The	voltage	range	of	the	DAC	output	should	be	from	0V	to	3.3V.)	

Step	5:		Verify	the	signals	on	an	oscilloscope	

Confirm	that	the	signals	produced	by	the	FPGA	with	the	spi2dac.v	module	agree	with	those	
from	Modelsim.	 Set	 SW[9:0]	 to	 10’h23b	 and	measure	DAC_SCK	 (TP3)	 and	DAC_SDI	 	 (TP1)	
using	an	oscilloscope.		You	may	need	to	trigger	the	scope	externally	with	the	DAC_CS	signal	
(TP2).	Compare	the	waveforms	to	those	predicted	by	Modelsim.	

	

3.0	 Experiment	11:		D-to-A	conversion	using	pulse-width	modulation	

Instead	 of	 using	 a	 DAC	 chip	 (and	 SPI	 serial	 interface	 to	 communicate	 with	 the	 chip),	 an	
alternative	method	 to	produce	an	 analogue	output	 from	a	digital	 number	 is	 to	use	pulse-
width	modulation	(PWM).		The	Verilog	code	for	a	pwm.v	module	is	given	to	you	in	Lecture	9	
slide	15.			

Create	a	design	ex11_top.v	according	to	the	circuit	shown	below.		Use	the	scope	to	examine	
the	signals	at	TP5	and	TP8.		Compare	the	output	voltage	ranges	at	TP8	and	TP9.	

	
	

	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 4	

4.0	 Experiment	12:		Designing	and	testing	a	sinewave	table	in	ROM	

This	part	of	the	experiment	leads	you	through	the	design	of	a	1K	x	10	bit	ROM,	which	stores	
a	table	of	sine	values	suitable	to	drive	our	DAC.		The	relationship	between	the	content	of	the	
ROM	D[9:0]	and	its	address	A[9:0]	is:	

D[9:0]	=		int(511*sin(A[9:0]*2*pi/1024)+512)	 	 for	1023	≥	A[9:0]	≥	0	

Since	 the	DAC	 accepts	 an	 input	 range	 of	 0	 to	 1023,	we	must	 add	 an	 offset	 of	 512	 in	 this	
equation.	(This	number	representation	is	know	as	off-set	binary	code.)	

Before	 generating	 the	 ROM	 in	 Quartus	 using	 the	 “Memory	
Compiler”	 tool,	we	 need	 to	 first	 create	 a	 text	 file	 specifying	
the	contents	of	the	ROM.		This	can	be	done	in	different	ways.		
Included	on	 the	Experiment	webpage	are:	1)	 a	Python	 script	

to	do	this;	2)	a	Matlab	script	to	do	the	same	thing;	3)	a	memory	initialization	file	
rom_data.mif	 created	 by	 either	 method.	 	 	 Download	 these	 files	 and	 examine	
them.	

Click	Tools	>	IP	Catalog	to	bring	up	a	tool	which	helps	to	create	a	1-Port	ROM.		A	
catalog	window	will	pop	up.		Select	from	the	window	>Library	>Basic	Functions	>	
Onchip	Memory	>	ROM	1-Port.	Complete	the	on-screen	form	to	create	ROM.v.	

To	verify	the	ROM,	create	the	design	ex12_top.v,	that	uses	the	switches	SW[9:0]	to	specify	
the	 address	 to	 the	 ROM,	 and	 display	 the	 contents	 stored	 at	 the	 specified	 location	 on	 the	
four	7-segment	display.			Once	this	is	done	and	loaded	onto	the	DE1,	verify	that	the	contents	
stored	in	the	ROM	matches	those	specified	in	the	rom_data.mif	file.	

5.0	 Experiment	13:		A	fixed	frequency	sinewave	generator	

Let	 us	 now	 replace	 the	 slide	 switches	with	 a	 10-bit	 binary	 counter	 and	 connect	 the	 ROM	
data	 output	 to	 spi2dac	 and	pwm	modules	 as	 shown	 in	 the	 figure	 below.	 	 Since	 the	 ROM	
contains	one	cycle	of	sinewave	and	the	address	 to	 the	ROM	is	 incremented	every	cycle	of	
the	10kHz	clock,	a	perfect	sinewave	is	produced	at	the	left	and	right	outputs	of	the	3.5mm	
jack	socket.	

	

Implement	this	circuit	and	verify	that	the	signals	produced	by	both	the	DAC	and	the	PWM	
are	as	expected.		What	is	the	frequency	of	the	sinewave?	 	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 5	

6.0	 Experiment	14	(optional	challenge):		A	variable	sinewave	generator	

Combine	 everything	 together	 to	 produce	 a	 design	ex14_top.v,	 which	 produces	 a	 variable	
frequency	sinewave	using	table-lookup	method.		The	sampling	frequency	is	10kHz,	and	the	
sine	 value	 is	 read	 from	 the	 ROM	 that	 is	 preloaded	with	 one-cycle	 of	 a	 sinewave	 (i.e.	 the	
address	of	the	ROM	is	the	phase	and	the	content	is	the	sine	value).		On	every	sample	period,	
advance	 the	 address	 (i.e.	 the	 phase)	 by	 an	 amount	 determined	 by	 SW[9:0].	 	 Derive	 the	
relationship	between	the	output	signal	frequency	and	the	switch	setting.	

The	overall	block	diagram	is	shown	below.		The	switch	setting	is	multiplied	by	a	constant	k	to	
convert	the	phase	increment	SW[9:0]	to	frequency.		

You	 can	produce	a	10-bit	 x	 14-bit	 constant	 coefficient	multiplier	using	 the	 IP	 catalog	 tool.	
The	14-bit	constant	is	14’h2710	(which	is	14’d10000).		The	product	is	a	24-bit	number,	and	
the	 frequency	 is	 the	 top	 14-bits	 (Why?).	 	 The	 frequency	 can	 then	 be	 displayed	 on	 the	 7-
segment	displays.			

Produce	 a	 439Hz	 sinewave,	 which	 is	 close	 to	 440Hz,	 the	 frequency	 commonly	 found	 in	
tuning	 forks.	 	Make	sure	 that	 this	 is	 indeed	correct	 (through	 listening	or	measuring	with	a	
frequency	counter).	

	

	

7.	 Experiment	15	(Optional	Challenge):		Using	the	A-to-D	converter		

In	this	experiment,	you	will	learn	to	use	A-to-D	converter	MCP3002	on	the	add-on	board	to	
convert	 analogue	 voltages	 to	 digital	 signals.	 	 Again,	 download	 from	 the	 webpage	 the	
spi2adc.v	module,	which	is	already	written	for	you	to	use.	

Instead	 of	 using	 the	 slide	 switches	 to	 control	 the	 frequency,	 use	 the	 A-to-D	 converter	 to	
convert	 the	 dc	 voltage	 of	 the	 potentiometer	 (which	 is	 between	 0v	 and	 3.3v)	 and	 use	 this	
converter	value	instead.			

	

To	help	you	know	what	you	should	aim	for,	the	solutions	for	ex14sol.sof	and	ex15sol.sof	are	
available	to	download.			

	


